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Time correlations in classical statistical mechanics 

P Schofield 
Theoretical Physics Division, 8.9, AERE, Harwell, Didcot, Berkshire, UK 

Received 6 September 1973 

Abstract. We give a formal expansion for the time evolution of a classical many-body 
system. I t  is suggested that this new method is capable of throwing light on some of the 
ad hoc assumptions which are currently made in the theory of liquids, and on some of the 
unresolved problems in the understanding of time correlation functions in fluids. 

1. Introduction 

In classical statistical mechanics one is concerned with the evolution of correlation 
functions of the type ( A ( O ) B ( t ) )  where A ( t )  and B(t) are functions of the 3N coordinates 
and momenta (in three dimensions), ri(t), pi(t) of the particles of the system, and the 
angular brackets denote the infinite volume limit of a canonical or grand canonical 
ensemble average. 

It is the purpose of this paper to develop a systematic expansion procedure for the 
time evolution of the system to relate the time correlation function to equilibrium 
configurational averages, making use of the special properties of the classical phase 
space distribution function of N particles, exp( - PEIN) .  Here is l/k,T, and H,v the 
hamiltonian for N particles 

(In this paper, we restrict attention to  particles all of the same mass and to a general 
N-body potential ON .) 

The time evolution of a classical system can he expressed in terms of an evolution 
operator s N ( t ) ,  which in turn is a function of the Liouville operator LN : 

s N ( r )  = exp(LNt) (2) 

We show in the following sections that one may develop a form of cumulant expansion 
of S(t )  so that one may write 

where e(r) is an operator which acts on both A and B. 
In the remainder of the paper we indicate how the method may be applied to  the 

theory of transport coefficients, and to density and current correlation functions. These 
will be followed up in subsequent publications. 

246 
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2. ‘Left’ and ‘right’ operators 

The key to the expansion procedure to be developed lies in noting that, by integration 
by parts, we may relate averages of the form 

(where q is ri or pi). To be precise 

Jexp( -pH)A2dp i  dpi = [exp(-pH)($A-g)Bdpi  

and 

1 exp(-pH)AB dri dri = J exp( -pH)( j?$A -2) B dri 

Thus, if we introduce ‘left’ and ‘right’ differential operators, denoted by arrows 

(At .> = ( A : )  

( A G B )  = ( E B )  

we may write, from ( 5 )  and (6) 

a’ a‘ 
- =  --+p--. 
ari dri dri 

Next we note that the Liouville operator (3) may be written 

by adding and subtracting a term 

But using (9) and (IO), (11) may be written (inside an ensemble average) 

(9) 

(10) 

Now, in a time expansion of a correlation function (A(O)B(t)) ,  one needs to evaluate 
terms (AL”B) ,  To simplify such an expression we need to rearrange the terms so that 
all the left operators stand on the left and all the right operators on the right. In other 
words we need the commutation relations for the left and right operators. Clearly, since 
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in the average the momentum and position integrals are separated, the p operators 
commute with the r operators. However for the p operators, we have 

and similarly 

and in addition, one finds 

- 
To simplify the notation, we introduce operators Ri and Li for (M/?)-”2a’/ari (note that 
these have dimensions of-inverse time) and dimensionless Bose operators z i ,  z,? for 
(M/b)”28!i?piand (M/b)1’2d/8pi. Further, we will use bold roman R and L to denote the 
3N vectors { R i } ,  { L i } .  When it is necessary to distinguish particles, we will use italic 
vectors Ri or Cartesian components Rq. 

In terms of these operators, the Liouville operator may be written 

2 = Z . R - L . Z ’  

= 1 (ziRi - Liz’). 
i 

zi  and 2: commute with Ri and L i ,  while 

[z’ z .]  = 6 , .  

[Ri, Ljl = @ i , j  

1 ’  I 

with 

The comma in is introduced because it will be necessary to distinguish derivatives 
which arise from right differentiation (before the comma) to left differentiation (after the 
comma). Thus, we shall write for example, 

although these are both equal to (A4b)-1’2(a/ari)@j,k, by (4). 

are given by 
Finally we note that the momentum of and the force on the ith degree of freedom 

pi = (MP- ‘)‘’’(zi+z+) (21) 
a@ 
ari - = (MP- ‘jl”(Li+ R i ) .  
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3. Ordering of operators- the cumulant expansion 

In 5 2, it was shown how the evolution operator S( t )  could be expressed in terms of the 
left and right operators as 

S( t )  = exp[(z. R-L. z')t]. (23) 

To proceed, we wish now to rewrite the terms in the time expansion of S ( t )  in an ordered 
fashion making use of the commutation relations. When this is done the remaining 
operators act only on the 'external' functions A and E .  Operators acting in this way will 
be denoted by a zero suffix : Lo, zo acting on A and R,, zi acting on E. The individual 
operators will be represented by hats : ei etc. 

To demonstrate the procedure, consider the first three terms in the Taylor expansion 
of S( t )  : 

m 1  
1 

S(t)  = c +t". 
,=, n .  

Using the commutation .relations, one finds 

S ,  = Z ~ . R ~ - L , . Z ~  = el 
S ,  = ( z . R - L . z + ) '  = .&:+e2 

with 

e, = - 1 ( f i [ R i ,  Lj]2i' + &[Z+,  Z j ] R j )  
i j  

= - 1 2i@i, j2T - Lo . R,. 
i j  

Similarly one finds 

s3 = L: + 3e,f;, +e3 

with 

e, = 1 @&2; - 2J j )+  1 (2i@i,j,hf2: - 2i2j@ij,k2:). (29) 
i J  i j k  

These first terms suggest that S( t )  may be conveniently written in the cumulant expansion 
form 

~ ( t )  = exp €( t )  (30) 
with 

e, , e, and t3 being given by (25), (27) and (29), above. 
We shall now show that this is indeed the case, and present the rules for obtaining the 

terms &, . Before doing this, we introduce a further notational device. Each term in the 
expansion will contain a product of derivatives of the potential @. If these are labelled by 
a dummy superscript eg @"), then the derivatives can be represented by operators 
L,, R, which act solely on a(,). Thus for example, (29) may be written 

L, = Lo . R,@("'L,. Z: - Z, . R , W L , .  R, + z , . R,@'"'(L, . z:)~ - (z, . R,)2@'")(L, . z:). 
(32) 
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Consider a term in S( t )  involving Z factors z .  R and J factors L .  z'. There are 
('; J ,  such terms corresponding to all possible orderings, and each has a coefficient 
[( - l)J/(Z+J)!]tr+J. The ordered operator arising from such a term gives a number of 
terms involving 9, ff, t, 9' and derivatives of the potential. 

Consider first the momentum operators. Each ziz/ gives a term with iiif. In addition 
for each pair in which zj' precedes the zi, there will be a term L , Z'Z . R replaced by 
L . R .  Thus the result of ordering the z operators is to  give a series of terms 

Rk precedes the corresponding L, . 
Next we tackle the position operators. For each ordered pair RiLj ,  there is a term 

with LjRi plus a term with RiLj  replaced by Next from each triplet RiRjLk there is 
a term with this combination replaced by @ i j , k .  In addition to terms involving one @ 
there are terms with products of @ ' S .  The simplest of these is @ i , j @ j , k  which arises from 
combinations RiLjRjLk,  and so on. The operators which are not replaced by 0's  remain 
as and fi operators. 

l l i , l  J - K n J  j =  - K l l F =  l i i i f ( R i L j L k R k ) P  where ( )p  represents a permutation in which no 

As an example consider the ordering of R ,L,R,L,L,.  This gives : 

5 term 
4 term @)i,jk from triplets (1,24) (1,25) (1,45) (3,45) 
2 term @ i j , k  from triplets (13,4) (13, 5) 
1 term @ i , j k l  from (1,245) 
1 term @ i j , k l  from (1 3,45) 
4 term @ i , j @ k , l  from (12,34) (12,35) (14,35) (15,34) 
1 term @i, j@k, ) , , ,  from (12, 345). 

from pairs (1,2) (1,4) (1, 5) (3,4) (3, 5) 

Let us now invert this reasoning and ask what is the coefficient of a particular ordered 
term. First we distinguish 'linked' from 'unlinked' terms. Each term contains suffixes in 
pairs, one from a right operation and one from a left operation, eg iiffi, i i@i , j@j,kRk,  
fiffiLj2,', i i f f i L j @ j , k f f k .  Linked terms are those which cannot be expressed as a product 
of similar terms-the first two above, for example-whereas unlinked terms (such as the 
second two) can be expressed in this way. 

The general term can be written as a product of linked terms ($,)01($J2.. . ($,)or, 
where $, is a linked term arising from n, pairs of operators z . R, L . Z' . Such a term has 
a coefficient (l/N!)tN with N = ZL= ,a,n,, from the expansion of S ( t ) ,  times a coefficient 
giving the number of ways in which this set of suffixes can be chosen-namely 

In addition each $s contains a numerical coefficient depending on its structure. This is 
discussed in the next section and the appendix. 

From the above it follows that S( t )  can be expressed in cumulant expansion form 

where L(t) is a sum over linked terms which may be written 
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4. The time expansion of t ( t )  

In this section we consider the general term, $s, of the expansion (34). This we do in 
three stages : (a) we consider some simple terms in detail, (b)  we introduce a diagrammatic 
representation and ( c )  we consider the evaluation of the general term. 

The general term t+b may be written as 
I J K  L M  

where @(i, j ,  k ,  I ,  m) is a product of potential derivatives containing ‘right’ suffixes (before 
the comma), i, j ,  left and right suffixes k and left suffixes I and m. The power oft  associated 
with this term is equal to the number of positional suffixes, and the sign is determined by 
the number of left suffixes. Thus $ of (35) has a coefficient [( - l)J+x/N!]tN with 
N = I + 2 J + 2 K + 2 L + M .  In addition the coefficient C contains a combinatorial 
factor which gives the number of arrangements of operators in the original expansion of 
S(t)  which can contribute a term $. 

The terms may now be classified, therefore, according to the pattern of terms in 
@(i, j ,  k ,  I ,  m). From 4 3, we have immediately : (i) the terms independent of 0 : 

(ZO.R,-L~.Z~+)~-~L~.RO~~ 
and (ii) the Coefficient of @ i , j :  

Higher terms rapidly become more complicated. However, for purposes of illustra- 
tion we consider in detail the coefficient Of@i,jk. This has termsin t 3 ,  t4, t 5  and t6  according 
to the number of z operators. We quote the various terms, followed in parenthesis by 
the original orderings from which they arise: 
(iii) coefficient of 

1 
3 !  

1. * + * +  zizj zk - t 3  

1 
4 !  

3 Pihf  Rk - t4 k R k L j )  

(Li  x above) 

I t  is now natural to  introduce diagrams to  represent the combinations of derivatives 
of @ which occur in @(i, j ,  k ,  I ,  m). This we do as follows. The diagrams consist of vertices 
representing the potential and directed bonds representing derivatives. In addition, 
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there are external bonds to represent the capped operators-‘open’ for S and 2’ and 
‘closed’ to  represent f, and fi. 

Thus the diagrams representing (i) and (ii) (the first and second order diagrams) are 

(i) -, et- and - 
while for example 

represent the fourth order terms 1 5&&k(Pi,j(Pjk,ffff and 3Si@i,jk(Pjk,lS: respectively. 
The time factor t N / N  ! associated with each diagram in its contribution to f,(t) has 

N given by twice the number of closed bonds plus the number of open bonds ; the sign is 
given by ( -  1)’ where 1 is the number of occurrences of the element H. In the examples 
above one has (- 1)4t8/8 ! and (- 1)3t6/6 !. 

The general rule for obtaining the combinatorial factor is somewhat complex and is 
relegated to an appendix. The principle is to note that an element H arises from a left 
operation (after the comma on a (P), and - from a right operation. One needs to 
calculate therefore the number of ways these operators can be ordered with all the ‘right’ 
labels to the right of the corresponding left labels. In counting these, (a) the order of the 
zi determines that of the Ri so that iihjRiRj is not distinct from SiSjRjRi, and likewise for 
Li and z: and (b) in terms with LiRi ,  the order of either the L’s or the R’s is fixed so that 
(fixing L), LiLjRiRj and LiLjR,Ri are distinct but LiLjRiRj and LjLiRiRj are not distinct. 

To illustrate this we consider the two elements : 

The first gives a contribution 6!/(2!)33! from the ways of choosing three pairs LR from 
six operators and fixing the order of the three L operators; the second gives 
14!/8 !6! .4!/2’2!, the first factor being the number of ways of putting down the eight and 
six operators in the lower and upper routes between the two ends, while the second 
rep’resents the number of ways of obtaining the loop in the upper half. 

These are diagrams which may be simply reduced by successively partitioning sets of 
operators. An example of a diagram which cannot be treated in this way is 

The combinatorial factor for the general diagram is derived in the appendix. This 
may be specified by (T+ 1) ordered vertices, those labelled 0 and T +  1 representing the 
external functions A and B on which the L and I? operate, and N bonds of which these are 
n,., between internal vertices r and s, Z, and m, left acting open and closed external bonds 
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and p ,  and 4, right acting external bonds. The contribution of this diagram to E( t )  is 
T 

tN n ??,,S. JV n (zo . Rs)ls(L0 . RJmS ( -  
N !  s =  1 

T S=l S T 

x n n (L,. R,)"',' n (R,. L#'(R,. z:)q* n @@) 
s = 2  r = l  r =  1 s =  1 

where %',,,, Jlr, Q and N are as given in the appendix. 
In the next section, we show how t ( t )  may be written more compactly as an expansion 

in the interaction 0, by summing sets of diagrams and removing the apparent complexity 
of the combinatorial factors. 

5. Potential expansion of i ( t )  

I t  will now be shown that the formal expansion of @(t) may be more compactly written in 
terms of a different set of diagrams, achieved by summing over multiple connections 
between two vertices. That is, we write 

- = ct.+ (3.e.. . . 

for internal bonds, while for external bonds we write 

In addition, we introduce 'optional' bonds denoted by broken lines, to include the 
possibility of no direct link between two vertices or externally : for example 

In terms of these diagrams E ( t )  may be represented up to third order in the potential 
by 
Qt)  = -+e + e+- + t j e  + - 

T - - -- 
1 

\ -  '.--- \ + .-fC& - - *' 
- - -- 

+ 
\ --  - -  

It is shown in the appendix that the operator functions associated with these diagrams 
can be constructed from functions gob(t) for internal bonds, and g,(t), gb+(t) for external 
left and right bonds: 

g,,b(t) = exp( - +La . Rbt2) 

g,(t) = exp(zo . Rot -+Lo . Rot2) 
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Thus the first order term is 

and the second term is (after some rearrangement) 

6. The calculation of correlation functions 

At this stage we should consider precisely what has been achieved by formally writing 
the evolution operator in the cumulant form (30). Essentially what has been done is 
(i) to average the correlation functions over the initial Maxwell velocity distribution and 
(ii) to reduce the configurational average to a canonical form in which all first derivatives 
of the potential have been integrated out. Thus the correlation function of two functions 
A and B which are functions of position only is reduced directly to the evaluation of a 
configurational average (of the function obtained after setting z and z +  equal to zero). 
Functions of velocity are similarly reduced after the operation of the f and 2’ operators. 
Thus, for example the velocity autocorrelation function (vi(0) . vi@)) is the configurational 
average of the coefficient of zi . z[ in the expansion of S ( t )  in the external operators. 

Of course, the utility of the formalism depends on the ability to use it to calculate 
properties of the system-in particular the transport coefficients, density and current 
correlation functions etc-which require the extrapolation from short time to long time 
behaviour. We shall demonstrate the utility of the method in this respect in a second 
paper. Here we content ourselves with a number of general remarks. 

6.1. Free particles 

If there is no interaction, then S ( t )  reduces to 

so(t) = exp 1 (ii . fii - L~ . i+ )t - + L ~ .  ai[’) 
( i  

(45) 

giving no coupling between different particles. To demonstrate that this is correct, 
consider the correlation of A(r) and B(r), with Fourier transforms J((K), B ( K ) :  

(A(O)B( t ) )  = jdR j j exp[ i (K+K’) .  R]A(K)B(K‘)(exp(iK. vt)) d3Kd3K 

= j dKA(K)  exp[ - + K 2 ( k T t 2 / M ) ] B ( K )  

which is precisely what one obtains directly from (45). 
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6.2. Functions of position only 

If A and B are functions of position only, then the general expression for @ ( t )  simplifies 
considerably. First since 2 and 2+, can be set equal to  zero, and second since if A and B 
are represented by their Fourier coefficients A ( K ) ,  B(K')  where K represents the 3N co- 
ordinates K;, @(t) reduces to a function of K, r and the coordinates of the system. Thus 
from (41) g,(t) is replaced by 

- 
g , (K ,  t )  = exp( -)iK . Rat2)  (47) 

gbf(K', t )  = exp(+iLb. F t 2 )  

with 

In particular we may write the single particle density correlation function 

(exp iK . (ro(t) - r,(O))) = (exp @, , (K ,  4 )  (49) 

and the density-density correlation function 

R.a = -iK( %) kT ' I 2  L b  = iK( "I) kT li2 

and all other external operators zero 

(Note that after the counting has been done, the commas on the @ may be dropped.) 
(51) represents in compact form, the expression from which the 'sum rules' for the 
scattering functions may be calculated (Schofield 1968). 

6.3. Pair potentials 

I f  the potential @({ri}) can be expressed as a sum of pair potentials $Ei*jq5(ri,), iurther 
reduction is necessary. To illustrate this we give the contribution of an element of the 
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diagrams of 9 5 

Thus each bond gives rise to a two-body interaction, represented by the first term in (52), 
and an interaction involving three particles from the second term. Similarly the operation 
of an external bond, (g,(t) - 1) from a single particle function A(ro, po) gives 

7. Discussion 

In this paper we have presented a formal method of evaluation of time dependent 
correlation functions in classical statistical mechanics ; the usefulness of the method has 
yet to be demonstrated, and this will be done in forthcoming papers, the first of which will 
deal with the binary ‘hard-core’ collision contribution to transport coefficients. To 
conclude this paper we make some general remarks concerning the method. 

In the compact form of 9 5, the theory is expressed in terms of the operators gab(t), 
which play the role of propagators. It is perhaps a weakness of the formalism that these 
operators do not have a clear cut physical interpretation. They may be regarded, 
however, as in some sense representing velocity averaged propagators. We hope to 
demonstrate, however, in future work that this weakness is compensated by ease of 
computation. 

Because we work with velocity averaged quantities, it is not obvious how our work 
relates to other formulations of the classical many-body problem (for example, Prigogine 
1962, and more recently Gross 1972, Martin et a1 1973). The connections will, no doubt, 
emerge in time. 

A second important comment should be made regarding the convergence of the 
expansion of $5. It is apparent from the form of the operator functions &(t) that there 
are convergence problems with the expansion (39). For instance if the potential is 
Fourier transformable, then the expansion contains terms like exp( - 4 K .  K t2 )  which 
diverge for K .  K‘ < 0. The means by which this may be resolved in general is not yet 
completely clear. Indeed, one would not expect this to be simple since the conditions 
on the potential for dynamical stability of the system are quite severe. For repulsive 
differentiable potentials (eg inverse power potentials) the problem does not arise since 
these L and R acting on @ have the same sign. 
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The major potential advantage of the method (apart from the trivial one of simplifying 
the calculation of ‘sum rules’, or the Taylor expansion of correlation functions) arises 
from the fact that it is not a density expansion, and therefore should be directly applicable 
at liquid densities. It will be shown, for example, that the various ‘kinetic’ and ‘con- 
figurational’ contributions to transport coefficients correspond to fairly simple sets of 
diagrams representing configurational averages whose symmetries and similar time 
dependence relate the numerical contributions to different coefficients. 

Appendix. Combinatorial factors for diagrams 

Consider a diagram with T vertices, labelled from left to right 1 . . . T. In addition, we 
may regard an external bond as terminating in a vertex labelled 0 (on the left) or (T+ 1) 
(on the right). Let nr,, be the number of bonds connecting vertex r to vertex s, and denote 
the set of L and R operators which give rise to these bonds by { r ,  s}. The number re- 
quired is the number of ways of arranging these operators subject to (i) all Ri operators 
associated with vertex s must appear before any L j  associated with vertex s and (ii) any 
R,  associated with vertex s must appear after the L, associated with vertex r( <s). 

We consider the problem in two parts, first the number of ways of arranging the sets 
of operators, and second the number of ways the operators in each set may be ordered. 

Let n:,s ( r  < x < s) denote the number of operators of the set { r ,  s}, in any allowed 
arrangement, which occur before the last operator of any set {U, x} but after the last of 
any set {U, x- l} ; let n:,x be the number between vertices r and x after the last of any 
set {u, x- l} .  

Thus 

where I , ,  q, are the number of open external bonds and m, and p s  the number of closed 
external bonds. 

The number of ways of arranging the sets in the interval x is a product of two factors 
(i) the number of ways of arranging the elements of the sets { r ,  s }  for s # x with the 
union of the sets { r ,  x}, excluding the last element and (ii) the number ofways of arranging 
the sets { r ,  x} : 

The total number of ways of arranging the sets is therefore 

T +  1 

M = c n A,. 
P x = l  

The sum of P is over the number of ways of dividing the operators into the subsets x, 
subject to (A.1-3). 
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The number of ways of arranging the elements within each set is 

Finally, we require the time dependence of the diagram in its contribution to &t) 
which, from the main text, is ( - l)QtN/N ! with 

Q = E m s +  I P S +  C n r , s  

N = 1 ( I ,  + 2m, + 2nr, ,  + 2p, + 4,). 
(A.7) 

To perform the sum over multiple bonds, as discussed in 0 5 of the paper, we have to 
sum the diagrams in E ( t )  over nr,, ,  m,,  p,, I ,  and 4, with the appropriate power of t .  This 
may be done by generalizing the beta function integral 

Jo l ( l - ry- l rxdi  = x ! ( y -  l ) !  
(X+Y) !  ' 

The generalization we require is 
f I  

S&t,(t-r,)"-' 0 ~odr2 ( f l - r2 )xz -1 . .  . ~ ~ ~ ~ t , , ( t , , - , - - t , , y ~  

It follows directly from (A.4, A S )  that 

with 
X - 1  T f l  

sx = c c e,,. 
r=O s = x  

But 

x r=O 

is just the integral of the form (A.9) with ( t x -  - t,)"x- replaced by 

('4.9) 

(A.lO) 

(A.11) 

(A.12) 

where 
x-  1 

v, = 1 nf,x.  
r=O 

(A. 13) 
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Next we note that (Z:=r+l n:,s)! divided by the denominator of (A.lO) is just the 
coefficient in the multinominal expansion of ( t ,  - t,)' as (tr - tr- + t r -  - t r -  . . . - t f .  

Therefore the sum over P can be performed, yielding 

J V t N =  N !  G( t ; Is ,ms ,nr , s ,p , ,q , )  (A.14) 

where 
r 

(A.15) 

Finally one may sum over all values of the indices, after multiplying by the combinatorial 
factors Y,. and the sign ( -  l)Q to obtain the result quoted in 0 5, namely that the contribu- 
tion to L(t) of a diagram with T vertices may be written (in the notation of 0 5) 

(A.16) 

where fab(t) = &(t) or gab(t)- 1 according to whether the bond between a and b is 
optional or not. 
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